ECOLOGICAL CONSIDERATIONS IN THE MANAGEMENT OF WILDLIFE DAMAGE

ROBERT K. SWIHART, Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907

Abstract: Strategies for managing wildlife damage may be divided into 3 broad categories: direct manipulation of populations, manipulation of behavioral or ecological traits of pest species, and manipulation of environmental features. For each of these categories, I review the importance of ecological considerations in determining the effectiveness of management strategies. Proper incorporation of ecological information is important to the success of management strategies in all 3 categories. I predict that future demands will increase for ecologically-based strategies that require minimal intervention, and for integration of management strategies that simultaneously address problems posed by both vertebrate and invertebrate pests. Several recent ecologically-based techniques are discussed, and pioneering efforts at comprehensive programs of integrated pest management are identified. Successful management of wildlife damage requires balancing ecological, sociological, and economic concerns. Attaining this balance in the future ultimately may depend upon our ability to develop new strategies of managing damage and to foster among the public an increased understanding of ecological processes pertaining to damage and its management.

Ecological considerations are of paramount importance to the wildlife professional in formulating strategies for managing wildlife populations. In fact, wildlife management in its simplest form may be defined as the application of ecological knowledge to vertebrate populations. My objectives are to provide an overview of how ecological considerations presently are or could be incorporated into strategies for management of wildlife damage and to identify some ecologically-based strategies which may prove useful in the future.

Effective strategies for reducing damage rely upon an understanding of the biological factors that lead to damage. Population size often is a principal determinant of the extent of damage. In addition, numerous behavioral and ecological attributes of individuals may influence the extent of damage, including foraging habits and food preferences, mobility, habitat requirements, and various aspects of behavior (Fig. 1). Three general approaches to managing damage can be identified within this framework. Damage may be reduced by: (1) direct manipulation of population levels; (2) indirectly, by manipulation of behavioral or autecological characteristics; or (3) indirectly, by manipulation of naturally occurring environmental features. I will summarize selected examples of these 3 approaches in the following sections.

I am grateful to M. R. Conover and D. Williams for providing useful comments on a draft of the manuscript. This is Purdue University Agricultural Experiment Station Paper Number 13175.

DIRECT MANIPULATION OF POPULATIONS

The efficiency with which the abundance of a pest population can be reduced may be improved by basing management strategies on ecological and life history characteristics of the species. I use 2 examples to illustrate the potential impact of ecological factors on strategies designed to directly reduce population numbers.

Voles

Voles (Microtus) cause extensive damage to apple trees in orchards of eastern North America (Anthony and Fisher 1977, Ferguson 1980), typically by gnawing phloem and cambium tissue of the main stem and large lateral roots. Gnawing often reduces tree vigor and yield, and increases mortality of affected trees (Sullivan et al. 1980, Richmond et al. 1987). Various toxic baits commonly are used to reduce vole populations in orchards, including acute toxicants such as zinc phosphide and multiple-dose toxicants such as chlorophacinone and diprophacinone.

![Fig. 1. Some key components contributing to the type and extent of damage caused by a wildlife population. Although not shown in the diagram, ecological and behavioral characteristics of individuals may be altered by changes in population size.](image)

Development and selection of effective rodenticides can be enhanced by considering several features associated with selection of food by voles. Like other rodents, voles presumably use sensory stimuli such as smell and taste to select their food, as well as associative learning (Garcia and Hankins 1975, Swihart 1990). Consequently, bait formulations that closely mimic a preferred taste presumably enhance the acceptability of a bait (Reidinger and Mason 1983). The degree to which
ingestion of a bait is associated with subsequent illness also can influence a compound's effectiveness. For instance, ingestion of a sublethal dose of zinc phosphide can result in subsequent bait shyness. And finally, many rodents are capable of generalizing learned aversions to similar-tasting foods (Nachman et al. 1977). Thus, in orchards where > 1 toxicant is applied, either baits with dissimilar taste features should be used, or in the case of sequential applications, a bait should be used that produces minimal bait shyness following consumption of a sublethal dose (Reidinger and Mason 1983).

Interspecific differences in ecological and life history traits may also affect the success of a strategy for controlling voles. For instance, both meadow voles (Microtus pennsylvanicus) and pine voles (M. pennsylvanicus) inhabit eastern orchards. However, life history traits differ markedly between the species: meadow voles produce larger litters (meadow vole $X = 5.0$, pine vole $X = 2.2$; Keller 1985), reproduce at an earlier age (Reich 1981, Schadler and Butterstein 1979), and have a shorter gestation period than pine voles (Kirkpatrick and Valentine 1970, Reich 1981). Reproductive rates of meadow voles apparently are not density dependent, whereas reproduction of young female pine voles is phenornonally suppressed by adult females (Anonymous 1985). Overall, then, meadow voles have a greater biotic potential than pine voles. Meadow voles also move over more extensive areas and occupy a wider variety of habitats than pine voles (Miller and Getz 1969, FitzGeral and Madison 1983, Getz 1985, Swihart et al. 1988). Pine voles are primarily fossorial, whereas meadow voles travel along surface runways (Wolff 1985). In addition, meadow voles expand their movements under snow cover (Madison and McShea 1987). Coupled with their high biotic potential, these traits suggest that meadow voles are capable of recolonizing and repopulating treated orchards more rapidly than pine voles. From these data we can infer that: (1) similar reductions in populations of pine and meadow voles will have a longer-lasting effect on the former; and (2), a single application of toxic bait in autumn will be less effective at reducing vole problems in orchards where meadow voles are abundant in adjacent habitats, unless these habitats also are treated.

Differences in social structure and foraging behavior also can influence the effectiveness of a particular control strategy. Pine voles are monogamous and live in extended family units (FitzGeral and Madison 1983), whereas meadow voles are polygynous and females are territorial during the breeding season (Madison 1980, Boonstra and Rodd 1983). Moreover, pine voles have a strongly developed caching instinct (Byers et al. 1976). Caching promotes repeated feeding on baits by members of a family group. Not surprisingly, multiple-dose anticoagulants are more effective against pine voles (Byers 1984).

Woodchucks

Woodchucks (Marmota monax) cause damage in agricultural areas by feeding on row crops and garden plantings, by gnawing on young fruit trees, and by constructing burrows that are hazardous to farm machinery, livestock, and laborers. Gas cartridges placed in burrows are often used to reduce woodchuck populations in problem areas (Phillips et al. 1987).

The effectiveness of gas cartridges can be enhanced by taking into account several ecological and behavioral attributes of woodchucks. For instance, the temporal distribution of above ground activity of woodchucks is multimodal, with peaks in early morning, early-afternoon, and early-evening hours (Bronson 1962, Merriam 1966), although more late-evening activity (2100-2200 hr) than early-morning activity (0700-0800 hr) was noted by Merriam (1966). Clearly, selecting treatment periods when most woodchucks are below ground is advisable. Treatment of burrows during spring also can increase efficiency because burrows are not yet concealed by vegetation, and because juveniles have not yet dispersed from natal burrows.

Size of burrows also may influence success of a fumigation program. Woodchuck burrows can differ dramatically in size and number of entrances (Henderson and Gilbert 1978), and woodchucks are less susceptible to fumigation when occupying larger burrow systems with multiple entrances (Dolbeer et al. 1991). Hence, >1 cartridge may be required for successful fumigation of large burrows.

Finally, movements and habitat use of woodchucks may be influential in determining the long-term effectiveness of a management program relying primarily on gas cartridges. In addition to using burrows in cultivated fields, meadows, and orchards, woodchucks often use burrows in woods, along fencerows, and in other nonagricultural habitats adjacent to these sites (Grizzell 1955, Henderson and Gilbert 1978). For instance, females use burrows in woodland edges disproportionately often as natal sites, and adults continue to use these areas heavily after the breeding season (Swihart 1992). Typically, only 1 woodchuck occupies a burrow at any given time during the postbreeding season, but considerable time-sharing of burrows occurs (Swihart 1992). Woodchucks also range over fairly large areas that usually encompass several habitat types, and their ability to recolonize sites is quite good (Davis et al. 1964). Consequently, the effectiveness of a fumigation program is dependent upon treatment of adjacent nonagricultural areas, monitoring of treated burrows, and the extent to which treated areas are embedded within a mosaic of untreated areas that serve as source populations from which recolonization can occur (de Vos and Merrill 1957, Davis et al. 1964, Byers 1980, Dolbeer et al. 1991).

MANIPULATION OF BEHAVIORAL OR ECOLOGICAL CHARACTERISTICS

Most damage problems are associated with wildlife feeding on domesticated plants or animals. Crops prone to damage typically are highly palatable, abundant, and easily accessible to wildlife. Nonetheless, wildlife species generally also feed upon a wide array of naturally occurring foods. Efficient foraging thus entails maximization of nutritional and/or caloric...
benefits derived from foods relative to costs of foraging and ingestion that might lower the value of a type of food by lowering an individual’s probability of survival (Stephens and Krebs 1986, Howe and Westley 1988).

One strategy for reducing crop damage relies upon manipulation of behavioral or ecological characteristics so that the actual or perceived benefitcost ratio of feeding on a crop is reduced. At least 3 general variations of this strategy exist (Table 1; cf. Conover 1981). In the first, access to a crop is prevented or delayed using a physical barrier. A second variation involves application of chemicals that reduce the value of a food either by reducing its palatability (repellents) or by producing postigestional illness that is subsequently associated with the food item (aversive conditioning). A third variation increases the perceived cost of obtaining a food item by using fear-evoking stimuli. Examples of the latter 2 approaches are presented below.

Chemical Repellents and Aversive-Conditioning Compounds

Numerous chemical repellents are available commercially, and several have been tested for their ability to reduce feeding damage by wildlife (Table 1). Most repellents reduce palatability of treated crops by making them either distasteful or malodorous, although the sensory modality through which repellency is effected is difficult to determine (Garcia and Rustiniak 1980). For large herbivores such as deer (Odocoileus), consistent reductions in browsing damage to woody plants have been achieved using putrescent egg solids (e.g., Big Game Repellent®) or eggs (Palmer et al. 1983, Conover 1987a, DeYoe and Schaap 1987, Swihart and Conover 1990, Andelt et al. 1991). Consumption of corn seed and apple twigs by small mammals also can be reduced by using repellents such as thiram or methiocarb (Luke and Snetsinger 1975, Zurcher et al. 1983, Swihart 1990).

At least 2 problems are associated with chemical repellents. First, repellents may lower the palatability of a food item without reducing its actual nutritional value. Consequently, a repellent’s effectiveness may vary as a function of the density of a pest population, the presence of alternate foods, and the innate palatability of the target crop (Swihart and Conover 1988, 1990). Second, costs of applying repellents may be prohibitive on all but the most highly-valued crops. For instance, costs of commercial formulations of putrescent egg solids probably limit their use as deer repellents (Andelt et al. 1991). Because of cost considerations, moderately effective and inexpensive deer repellents such as Hinder® may be more practicable (Conover 1984, Andelt et al. 1991), particularly if used in conjunction with other management strategies.

Several aversive conditioning agents have been identified, including lithium chloride (Gustavson et al. 1974), methiocarb (Stickley and Guarino 1972, Guarino et al. 1974), and emetine dihydrochloride (Conover 1989). The major attraction of aversive conditioning agents is their potential to protect an untreated crop. An aversion is achieved by conditioning wildlife to associate the crop with gastrointestinal illness produced by prior ingestion of the compound while feeding on a treated portion of the crop.

Table 1. Examples of 3 general approaches to manipulation of ecological and behavioral characteristics as a means of reducing damage caused by wildlife.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Example</th>
<th>Target Group</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lagomorpha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rodentia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artiodactyla</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tree guards</td>
<td>Deer, Elk</td>
<td>Schaap and DeYoe (1986); O’Brien (1983)</td>
</tr>
<tr>
<td></td>
<td>Voles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bags, tape, netting</td>
<td>Raccoons</td>
<td>Conover (1977b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Birds</td>
<td>Foster (1979)</td>
</tr>
<tr>
<td></td>
<td>Ground squirrels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deer mice</td>
<td>Holm et al. (1988); Conover (1984)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deer</td>
<td>Conover (1984)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starlings</td>
<td>Clark and Shah (1991)</td>
<td></td>
</tr>
<tr>
<td>Aversive agents Crows</td>
<td>Canada geese</td>
<td>Conover (1985, 1990); Nicoletas et al. (1983), Gustavson et al. (1974)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coyotes</td>
<td>Gustavson et al. (1990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raccoons</td>
<td>Conover (1974); Swihart and Woodchucks (1990)</td>
<td></td>
</tr>
<tr>
<td>Increasing Costs Via Fear-Evoking Agents</td>
<td>Livestock-guarding dogs</td>
<td>Coyotes</td>
<td>Green et al. (1984)</td>
</tr>
<tr>
<td></td>
<td>Auditory devices</td>
<td>Birds</td>
<td>Booth (1983)</td>
</tr>
<tr>
<td></td>
<td>Predator odors</td>
<td>Small mammals</td>
<td>Sullivan et al. (1985a,b, 1988a); Swihart (1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snowshoe hares</td>
<td>Swihart et al. (1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Woodchucks</td>
<td>Swihart et al. (1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deer</td>
<td>Swihart et al. (1991)</td>
</tr>
</tbody>
</table>

* See reference for complete list of species managed within each order.

Aversive conditioning agents apparently perform better with some species than with others. For instance, methiocarb creates a conditioned aversion by Canada geese (Branta canadensis) to grass (Conover 1985), yet deer mice (Peromyscus maniculatus) fed seeds of corn and meadow voles fed apple twigs failed to generalize aversions subsequent to ingestion of food treated with methiocarb (Holm et al. 1988, Swihart 1990). Intraspecific variability in performance also occurs. Studies of lithium chloride-induced aversive conditioning of coyotes (Canis latrans) have produced both positive and negative results (Gustavson et al. 1974, Conover et al. 1977, Burns 1980).
In field trials, raccoons (Procyon lotor) avoided untreated eggs if they previously had ingested eggs treated with emetine dihydrochloride (Conover 1990). Thus, waterfowl eggs could be protected from predation by raccoons, but only if sufficient numbers of treated eggs are ingested to induce an aversion before the onset of laying. Such a conditioning program does not entail reductions in predator populations. However, costs will be proportional to the abundance of predators because more treated eggs (and hence more labor) will be required to avert the same proportion of the population. Consequently, the cost-effectiveness of an aversive conditioning program will be lower than a program of predator control (Conover 1990).

Fear-Inducing Stimuli

Increasing the actual or perceived risk associated with feeding in the vicinity of a crop can reduce a pest species’ activity in an area, and hence reduce the amount of damage. Livestock-guarding dogs are an example of increasing actual risk; they can reduce or eliminate sheep predation by coyotes (Green et al. 1984).

Pest species also may respond aversively to the presence of predator odors. Mammalian prey species readily recognize and avoid odors of sympatric predators (Fulk 1972, Stoddart 1980). Experiments have demonstrated that predator odors reduce damage caused by several species of mammalian herbivores, including snowshoe hares (Lepus americanus) (Sullivan et al. 1985a, Sullivan 1986), voles (Sullivan et al. 1988a), pocket gophers (Thomomys talpoides) (Sullivan et al. 1988b), woodchucks (Swihart 1991), and deer (Melchers and Leslie 1985, Sullivan et al. 1985b, Swihart et al. 1991). Nearly all of these studies examined feeding responses of prey on woody plants. Few studies have examined the effectiveness of predator odors in reducing consumption of herbaceous plants or other food types (Mueller-Schwarze 1972).

The degree to which a pest species responds aversively to a predator’s scent probably is dependent upon the length of the evolutionary association between the 2 species as well as the intensity of the predator-prey relationship during the species’ association (Swihart et al. 1991). Cultural transmission by prey of aversive responses to predator odors also may be important.

Habituation to predator odors may limit the long-term effectiveness of this technique. However, minimal habituation of prey to predator odors has been demonstrated thus far. Innate responses to fear-evoking stimuli should not habituate (Mueller-Schwarze 1974), and available evidence indicates that aversive responses in some species apparently have a genetic component (Mueller-Schwarze 1972, Gorman 1984). Nonetheless, occasional reinforcement would seem desirable, especially in areas where suitable alternative foods are in short supply.

The economic practicality of predator odors has received little attention. Coyote urine was more expensive, on a volumetric basis, than Hinder® or eggs, although it was less expensive than Big Game Repellent® or thiram (Andelt et al. 1991). The cost-effectiveness of predator odors could possibly be enhanced if the repellent components of urine, feces, or glandular secretions could be identified and synthesized. In the last decade, work has focused primarily on identification of repellent components of red fox (Vulpes vulpes) urine and mustelid (Mustela spp.) anal gland secretions (Sullivan and Crump 1984, 1986), and some preliminary work on bobcat (Lynx rufus) urine (Mattina et al. 1991).

MANIPULATION OF NATURALLY OCCURRING ENVIRONMENTAL FEATURES

Alteration of a pest species’ physical or biotic environment provides another ecologically-based means by which damage may be reduced (Table 2). Alteration of vegetation may reduce damage by reducing a habitat’s attractiveness or suitability for the pest species, or by providing alternative sources of food. In certain situations, enhancement of predator numbers also may reduce the damage caused by a prey species (Sullivan et al. 1988c). The following examples focus on vegetative manipulation because vegetation is more commonly manipulated than other features of the environment.

Nuisance Canada Goose

Nomigratory populations of Canada goose often eat grass growing in parks, on lawns, golf courses, and playing fields. Geese frequently become nuisances in these areas because their feces accumulate there (Conover and Chasko 1985). Many nuisance sites occur in urban or suburban settings, and hunting at these sites often is prohibited by local ordinances (Conover and Chasko 1985). Methiocarb effectively repels geese from grazing sites (Conover 1985), but it is no longer registered for this use in the United States. Consequently, the feasibility of manipulating vegetation as a means of reducing nuisance goose problems recently was examined (Conover 1991, Conover and Kania 1991).

Canada geese avoid eating ground cover plants such as common periwinkle (Vinca minor), Japanese pachysandra (Pachysandra terminalis), and English ivy (Hedera helix). Among grass species, feeding preferences were negatively correlated with the toughness of grass blades (Conover 1991). Thus, selecting unpalatable plants as ground cover may reduce goose numbers at a site. The practicality of ground cover management depends in part on landowner preferences for turf and on the severity of the goose problem. In many instances, landowners would be unwilling to replace bluegrass (Poa pratensis) with a coarser, less-palatable grass such as tall fescue (Festuca arundinacea). However, water company managers or others with severe goose problems may be less hesitant to switch to a less-attractive, but unpalatable, ground cover (Conover 1991).

Other vegetative modifications can also make a site less suitable for geese. For instance, geese prefer sites with open, relatively unobstructed views where predators can easily be
detected (Conover and Kania 1991). Thus, planting bushes and hedges around a lawn may limit the view of geese sufficiently to discourage them from using the site.

Table 2. Examples of approaches to reducing wildlife damage that require manipulation of naturally occurring environmental features.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Target Group</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using unpalatable plants</td>
<td>Voles</td>
<td>Lewis et al. (1983);</td>
</tr>
<tr>
<td></td>
<td>Deer</td>
<td>Conover and Kania (1988);</td>
</tr>
<tr>
<td></td>
<td>Canada goose</td>
<td>Conover (1991)</td>
</tr>
<tr>
<td>Management of peripheral</td>
<td>Voles</td>
<td>Cummins et al. (1984)</td>
</tr>
<tr>
<td>habitat</td>
<td>Woodchucks</td>
<td>Swihart (1992)</td>
</tr>
<tr>
<td></td>
<td>Waterfowl</td>
<td>Conover and Kania (1991)</td>
</tr>
<tr>
<td>Genetically resistant plants</td>
<td>Voles</td>
<td>Cummins et al. (1983)</td>
</tr>
<tr>
<td></td>
<td>Deer</td>
<td>Dimock et al. (1976)</td>
</tr>
<tr>
<td></td>
<td>Snowshoe</td>
<td>Bullard (1988)</td>
</tr>
<tr>
<td></td>
<td>hares</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birds</td>
<td></td>
</tr>
<tr>
<td>Alternative Foods</td>
<td>Deer mice</td>
<td>Sullivan and</td>
</tr>
<tr>
<td></td>
<td>Blackbirds</td>
<td>Sullivan (1982a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cummings et al. (1987)</td>
</tr>
<tr>
<td>Enhancement of Predation</td>
<td>Voles</td>
<td>Sullivan et al. (1988c)</td>
</tr>
</tbody>
</table>

Seed Predation by Deer Mouse

Seed predation by deer mouse (Peromyscus maniculatus) and other small mammals can hamper reforestation projects on cutover lands (Radwan 1970, Sullivan 1979a). Deer mice apparently use olfaction to detect seeds (Howard and Cole 1967), and greater densities of deer mice result in reduced survival of seeds (Sullivan and Swihart 1982a). Toxicants are of limited utility because deer mice quickly recolonize depopulated areas (Sullivan 1979a).

Distribution of sunflower seeds during seeding of conifers on cutover lands can significantly increase survival of conifer seeds by providing deer mice with an alternative food. For instance, a 7:1 ratio of sunflower seeds:Douglas fir (Pseudotsuga menziesii) seeds increased survival of Douglas fir seeds at 2 weeks postseeding from 5% (no sunflower seeds) to 70% (Sullivan 1979b). In a similar experiment, 3-week survival of lodgepole pine (Pinus contorta) seeds was increased from 12-15% to 50-82% when mixed in a 2:1 pine seed:sunflower seed ratio (Sullivan and Swihart 1982a). Conifer seed can germinate 2-4 weeks after seeding; thus, provision of alternate foods may significantly enhance efforts at direct seeding. Success of direct seeding programs also may be enhanced by seeding in late winter to early spring when small mammal populations are low and soil moisture is adequate (Sullivan and Swihart 1982b). Although alternate foods may exacerbate problems if they result in increased numbers of a pest species, numbers of deer mice in the preceding experiment never exceeded numbers found on control grids containing no sunflower seeds (Sullivan and Swihart 1982a).

FUTURE DIRECTIONS

As illustrated by the examples above, aspects of ecology figure prominently in each of the 3 general approaches to managing wildlife damage. Nonetheless, considerable room exists for improvement and innovation. For instance, new strategies of reducing population levels via chemical contraception appear promising for reducing problems caused by some species in circumstances where current methods of control are not feasible (German 1985, Kirkpatrick et al. 1990, Bickle et al. 1991, Garrott 1991), and the utility of various methods of chemical contraception will depend in part on behavioral and ecological factors (Turner and Kirkpatrick 1991). Modification of prey behavior using semiochemicals also appears promising as a potential strategy for managing damage caused by herbivorous mammals. Advances have been made in the development of devices enabling a slow, controlled release of predator odors (Sullivan et al. 1990a, b), and predator odors also can be effective secondarily by attracting additional predators to an area (Sullivan et al. 1988c). Molecular modeling of chemicals shows promise as a means of developing more effective repellents (Clark and Shah 1991). Manipulation of vegetation may, in the future, incorporate newly acquired information regarding defenses found in woody and herbaceous plants. For example, chemical defenses of woody plants against herbivory vary with respect to historical browsing pressure (Bryant et al. 1989) and latitude (Swihart et al. 1990). Consequently, selection of nursery stock from areas with greater levels of chemical defense may reduce damage by resident herbivores.

A single method of control rarely is capable of eliminating a problem caused by a wildlife species. Moreover, most agricultural operations are beset with >1 pest, both invertebrates and vertebrates. Coordination of control programs to reduce pesticide use and increase efficiency makes sense from environmental and economic perspectives. Truly integrated pest management programs that include vertebrates as well as invertebrates currently are receiving some attention, and further emphasis is deserved. Dolbeer (1990) stressed an integrated approach to reducing red-winged blackbird (Agelaius phoeniceus) damage to field corn that included use of bird-resistant cultivars of corn, frightening devices, alternative feeding sites, and insect management in corn fields. A comprehensive management program relying on minimal pesticide use recently was shown to be a cost-effective means of controlling vertebrate and invertebrate pests in a small commercial apple orchard (Prokopy 1991). Vegetation management, repellents, and frightening devices were used to reduce problems caused by voles, deer, and birds, respectively.
ADDITIONAL CONSIDERATIONS

Consideration of nonecological factors forms an important component of the decision-making process regarding strategies of managing wildlife damage. A principal objective in the management of wildlife damage is to reduce damage to levels that are economically acceptable while simultaneously minimizing adverse impacts on existing biotic systems (Giles 1980). As we have seen, the methods of obtaining such an objective are rooted in ecology. However, quantifying inherently subjective terms such as “tolerable” and “adverse impact” often is not entirely, or even primarily, based on ecological information. Rather, consideration of sociological and economic concerns frequently plays an important role in quantifying these terms (Pomerantz et al. 1986, Owens 1992, Timm 1992). In addition, an inadequate understanding of wildlife damage and its management contributes to public misperception of management strategies. Fortunately, education and open communication often are capable of correcting public misperceptions regarding management of wildlife damage (Timm and Schenitz 1988, Johnson 1990). An enhanced understanding of the ecological basis of management strategies will enable decision-makers to balance more equitably social, economic, and ecological concerns.

LITERATURE CITED

1990. Reducing mammalian predation on eggs by using a conditioned taste aversion to deceive predators. J. Wildl. Manage. 54:360-365.

